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By Frank J. Centolanzi 

SUMMARY 

A wind-tunnel inves t iga t ion  of t h e  heat  t r a n s f e r  t o  conical  configurations 
with c a v i t i e s  t o  promote boundary-layer separation w a s  conducted a t  Mach numbers 
ranging from 3.98 t o  5.79 and Reynolds numbers of 0.12 t o  0.19 mill ion based on 
model diameter. Both sharp and blunt  cones were t e s t e d .  

The r e s u l t s  show t h a t  t h e  presence of a cavi ty  changes the  d i s t r i b u t i o n  of 
heat t r a n s f e r  considerably. From t h e  standpoint of t o t a l  heat t r a n s f e r  t he re  i s  
an  adverse e f f e c t  of separat ing t h e  boundary l aye r  because heat t r ans fe r  i n  t h e  
reattachment region i s  high and a f f e c t s  a considerable f r a c t i o n  of t h e  t o t a l  
surface area. 

Wall cooling had a strong influence on the  flow over some of t he  models with 

I n  one case,  extreme w a l l  cooling caused completely at tached flow 
c a v i t i e s .  
move upstream. 
over a model which had a separated laminar boundary l aye r  under ad iaba t ic  
conditions.  

On some models, extreme w a l l  cooling caused t h e  t r a n s i t i o n  point  t o  

Under c e r t a i n  t e s t  conditions,  t he  flow over a model with a cavi ty  w a s  found 
t o  pulsa te .  
that observed for steady separated flow. 

With pulsa t ing  flow t h e  d i s t r i b u t i o n  of heat transfer i s  similar t o  

INTRODUCTION 

Theoret ical  and experimental s tud ies  have indicated t h a t  t h e  aerodynamic 
heat ing of vehicles  m y  be reduced i n  regions where t h e  boundary l aye r  i s  
separated.  
f e r  which indicated t h a t  separation of a laminar boundary l aye r  reduces t h e  aver- 
age heat  t r a n s f e r  44 percent.  
separat ion of a turbulent  boundary l aye r  can e i t h e r  increase or decrease the  heat 
t r a n s f e r ,  depending on t h e  l o c a l  Mach number. Experimental da ta  on heat transfer 
i n  cy l ind r i ca l  and two-dimensional separated flows ( r e f .  2)  a r e  i n  agreement with 
the  theory of reference 1 f o r  laminar but not f o r  turbulent  flows. Measurements 
on a loo half-angle cone having a cavi ty  i n  order t o  separate the  boundary layer  
( r e f .  3) show t h a t  t h e  t o t a l  heat  t r a n s f e r  i n  t he  cavi ty  w a s  reduced as predicted 

In  reference 1 Chapman presented a t h e o r e t i c a l  ana lys i s  of heat t rans-  

On the  other hand, t he  ana lys i s  indicated t h a t  



by the  theory of reference 1. 
however, w a s  increased considerably. 
t he  cone w a s  e s s e n t i a l l y  unchanged by a cavi ty .  

The heat t r a n s f e r  j u s t  downstream of t he  cavi ty ,  
Because of t h i s ,  t he  t o t a l  heat  t r a n s f e r  t o  

I 
For blunt  aerodynamic configurations t h e  highest  heating r a t e s  occur on the  

f r o n t a l  surfaces .  The r e s u l t s  of t he  previous t h e o r e t i c a l  and experimental 
invest igat ions leave unanswered the  question of whether separating the  flow 
would reduce the  heating on blunt  bodies.  
t o  explore t h i s  p o s s i b i l i t y  f o r  blunt  reent ry  bodies having cav i t i e s  t o  separate 
t h e  boundary l aye r .  

The purpose of t he  present t es t s  w a s  

SYMBOLS 
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q 
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r 

Re 

S 

Sm 

skin thickness ,  f t  

Btu 
lb-  OR 

spec i f  i c  hea t ,  - 

Mach nurriber 

l o c a l  hea t - t ransfer  r a t e ,  

Btu t o t a l  heat t r a n s f e r ,  - se c 

l o c a l  rad ius ,  measured f rom a x i s  of symmetry, f t  

Btu 
sec- f t2  

Reynolds number 

a r c  length,  measured along unmodified cone length,  f t  

value of s ,  measured a t  maximum radius  of model, f t  

T 

0 

7 

temperature, OR 

densi ty ,  l b / f t3  

time, sec 

Sub s c r i p t  s 

I t t o t a l  

w w a l l  

co f ree-  stream conditions 
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APPARATUS 

The tes ts  were conducted i n  t h e  Arnes 1- by 3-Foot Supersonic Wind Tunnel 
No. 1. 

The d e t a i l s  of t h e  hea t - t ransfer  models a re  shown i n  f igu re  1. The models 
were constructed of electroformed n icke l .  The n icke l  was electrodeposi ted on 
an aluminum mandrel t o  a thickness  of about 0.030 inch and then machined t o  a 
nominal thickness  of 0.010 inch. The aluminum mandrel w a s  dissolved i n  a solu- 
t i o n  of sodium hydroxide leaving a hollow, thin-walled model. 
d i s t r ibu t ions  of t h e  models were measured t o  determine the  heat storage capaci ty  
of t h e  skin.  

The thickness 

The general  arrangement f o r  cooling t h e  models i s  shown i n  t h e  photographs 
of f igure  2. The cy l ind r i ca l  por t ion  of t h e  cooling apparatus s l i d  forward t o  
cover the  models while they were being cooled t o  t h e  desired temperatures. 
arrangement insured t h a t  t he  model surfaces  were free of f r o s t  and e s s e n t i a l l y  
isothermal a t  the  start of t h e  run. The spray nozzle and cylinder were ac t iva ted  
by pneumatic air  cyl inders  and were completely r e t r ac t ed  i n  about 80 mil l iseconds,  

This 

The models were instrumented with copper-constantan thermocouples a t  t h e  
loca t ions  indicated i n  t a b l e  I. The output s igna l  from t h e  thermocouples w a s  
amplified and d i f f e ren t i a t ed  e l ec t ron ica l ly .  The var ia t ions  of T and dT/dT 
with time were recorded on multichannel oscil lographs.  

The d e t a i l s  of t h e  flow over t h e  models were recorded on f i l m  by means of 
t h e  spark shadowgraph technique. The spark source, whose exposure time w a s  about 
0.2 microsecond, w a s  t r iggered  when t h e  cooling mechanism was f 'ully r e t r ac t ed .  

TESTS AND PROCEDURE: 

The hea t - t ransfer  t e s t s  were conducted a t  Mach nunibers ranging from 3.98 
t o  5.79. 
avai lab le  a t  each Mach number i n  an attempt t o  achieve f u l l y  laminar flow over 
the  models. 
diameter. 

Most of the configurations were t e s t e d  a t  t h e  minimum Reynolds number 

The Reynolds nunibers ranged from 0.12 t o  0.19 mi l l ion  based on model 

The l o c a l  heat t r a n s f e r  t o  t h e  models was determined by t h e  t r ans i en t  
technique. 
t u r e .  
with t i m e  w a s  recorded. 

The models were cooled with l i q u i d  nitrogen t o  t h e i r  desired tempera- 
T and dT/d.r 

The following equation w a s  used t o  reduce t h e  data  
The cooling apparatus w a s  then  r e t r a c t e d  and the  va r i a t ion  of 

I n  a l l  cases the  i n i t i a l  slope of t h e  time-temperature curve w a s  used t o  minimize 
t h e  e f f e c t s  of conduction of heat along the  skin.  
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RESULTS AND DISCUSSION 

The primary objective of t h e  invest igat ion,  as mentioned previously, w a s  t o  
determine the  e f f e c t  of separating t h e  boundary layer  on the  heat t r a n s f e r  t o  
conical bodies of revolut ion.  Since the  occurrence of separation w a s  markedly 
a f fec ted  by w a l l  cooling, t h i s  e f f e c t  w i l l  be discussed before the  heat- t ransfer  
r e s u l t s .  The e f f e c t  of w a l l  cooling on two of t h e  models ( 1 C  and 1D) i s  shown 
i n  f igure  3.  A t  adiabat ic  conditions,  the  flow over both models i s  separated 
and laminar. Extreme cooling of the  blunt-nosed model (1D) caused boundary- 
layer  t r a n s i t i o n  ahead of t h e  reattachment point ,  whereas, on the sharp-nosed 
model ( 1 C )  the  boundary layer  became f u l l y  attached t o  the body. The l a t t e r  
e f f e c t  w a s  corroborated i n  t e s t s  of a model with t h e  same forebody i n  an Ames 
f r e e - f l i g h t  range. Both these e f f e c t s  of w a l l  cooling were a l s o  observed i n  
reference 2 f o r  c y l i n d r i c a l  separated boundary layers .  

Heat - Transf e r  Results 

The l o c a l  heating r a t e s  f o r  each conical  model with and without concavity 
a r e  compared i n  f igures  4 through 7. 
tures, Oo, -150°, and - 300' F . 
models a r e  shown f o r  each t e s t  condition. 

Data a r e  presented f o r  th ree  w a l l  tempera- 
Spark shadowgraphs of t h e  flow over the  concave 

For t h e  pointed cone, without concavity, model IA, t h e  heat- t ransfer  rates 
a r e  a l s o  compared i n  figure 4 with those predicted by the theory of reference 4. 
I n  general ,  t h e  theory i s  i n  fa i r  agreement with experiment. 

For the  pointed cone with concavity, model lC, extreme w a l l  cooling 
(Tw/Tt = 0.25)  causes t h e  boundary layer  t o  remain attached t o  the  body. 
d i s t r i b u t i o n  of heat t r a n s f e r  f o r  t h i s  case ( f i g .  4) seems t o  follow t h a t  
expected f o r  attached flow over such a shape. The heat t r a n s f e r  i n  the forward 
port ion of the  cavi ty  i s  about as low with attached flow (Tw/Tt = 0.25)  as it i s  
with separated flow (Tw/Tt = 0.72).  For moderate cooling where the boundary 
layer  i s  separated and laminar, the  heat- t ransfer  r a t e s  i n  t h e  rearward half  of 
the  separated region a r e  as much as 6 t o  7 times higher than those f o r  t h e  cone 
without a cavi ty .  

The 

The heat- t ransfer  r a t e s  t o  model U) and model 1B a r e  compared i n  f igure  5 .  
I n  general ,  t h e  heat- t ransfer  r a t e s  i n  the  f i r s t  75 percent of t h e  separated 
region of model 1 D  a r e  considerably l e s s  than those f o r  model 1B; whereas, the 
heat- t ransfer  r a t e s  i n  the  reattachment zone a r e  about 5 t o  6 times higher than 
those f o r  model 1B. 

An example of heat t r a n s f e r  i n  a separated region where the  boundary layer  
i s  t r a n s i t i o n a l  i s  shown i n  f igure  6. 
(Tw/Tt = 0.76) t r a n s i t i o n  occurs a t  about 
cooling (Tw/Tt = 0.26) t r a n s i t i o n  moves upstream t o  about 
upstream movement of t h e  t r a n s i t i o n  point broadens the region i n  which the  heat- 
t r a n s f e r  r a t e s  a r e  high. 

On model 2B with moderate w a l l  cooling 
S/Sm = 0.7; whereas, with extreme w a l l  

s / s m  = 0 .5 .  The 
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The r e s u l t s  of measurements on models with high drag a r e  shown i n  f igure  7. 
It i s  not c l e a r  from examination of t h e  shadowgraph p ic tures  t o  what extent  the 
flow over model 3B i s  separated. There appears t o  be l i t t l e ,  i f  any, e f f e c t  of 
w a l l  cooling on the  observed heat- t ransfer  d i s t r i b u t i o n .  

Under c e r t a i n  conditions the  flow over a concave model developed high- 
frequency pulsat ions.  The r e s u l t s  of heat- t ransfer  measurements on a pulsating- 
flow model, 2C, are compared with those on an attached-flow model, 2A, i n  
f igure  8. 
thousands of cycles per second), the  instrumentation recorded only temporal mean 
heating r a t e s .  The shadowgraph p ic tures  show only one phase of t h e  o s c i l l a t i o n  
since they a r e  s ingle  exposures. I n  general ,  the  heat transfer with pulsat ing 
flow resembles t h a t  with steady separated flow. 

Since the  frequency of o s c i l l a t i o n  w a s  ra ther  high (of the  order of 

The r a t i o  of the  t o t a l  heat t r a n s f e r  i n  
the  cavi ty  of model 1C t o  the  equivalent 
attached flow port ion of model IA i s  com- 
pared with t h e  t h e o r e t i c a l  predict ions of 
reference 1 i n  f igure  9. 

The t o t a l  heat t r a n s f e r  w a s  determined 
by graphical  in tegra t ion  of the  equation 
(see sketch ( a ) )  

Q = 2 f l l b  qr ds '  

where q represents  t h e  l o c a l  heat- t ransfer  
d i s t r ibu t ions  presented i n  f igure  4 .  

The r e s u l t s  show t h a t  for moderate 
cooling (T,/Tt = 0.72), t h e  flow on t h e  cone 

Sketch (a) 

with the cavi ty  i s  separated and fu l ly  laminar and the r a t i o  of t o t a l  he t t r a  S- 

f e r  i s  about 1.7 times t h a t  f o r  t h e  cone without t h e  cavity; whereas, f o r  extreme 
cooling (Tw/Tt = 0.25), the  flow i s  at tached and the  r a t i o  i s  nearly equal t o  
uni ty .  From the  standpoint of t o t a l  heat t r a n s f e r ,  experiment shows a very 
adverse e f f e c t  of separating the  boundary layer ,  i n  contrast  t o  the  t h e o r e t i c a l  
predict ion of a very favorable e f f e c t .  
i n  the  forward portion of the  separated region i s  o f f s e t  by the  increased heat 
t r a n s f e r  i n  and downstream of the  reattachment region. The maximum heat- t ransfer  
r a t e s  occur i n  a region which contains a la rge  percentage of the  t o t a l  surface 
area. Probably t h e  main reason f o r  lack of agreement between the  r e s u l t s  of t h i s  
invest igat ion and the  theory of reference 1 i s  t h a t  because of t h e  geometry of 
t h e  model i n  the  reattachment region, t h e  separated flow does not completely span 
t h e  cavi ty .  I n  order t o  make a fair comparison between these data and theory, 
for  example, the  l i m i t s  of in tegra t ion  f o r  determining the  t o t a l  heat t r a n s f e r  
should extend only over the  area t h a t  i s  t r u l y  separated. 
t h a t ,  f r o m t h e  standpoint of t o t a l  heat t r a n s f e r  f o r  the  cone model of f igure  9, 
there  i s  no over-al l  benef i t  of separating t h e  boundary l a y e r .  
the  l o c a l  heat t r a n s f e r  t o  t h e  other models a l s o  indicates  t h a t  no over -a l l  
benef i t  i s  derived from separating the  boundary layer .  

The large reduction of heat transfer 

The f a c t  s t i l l  remains 

Examination of 



CONCLUSIONS 

A wind-tunnel inves t iga t ion  w a s  conducted t o  determine the  effect iveness  
of boundary-layer separat ion i n  reducing t h e  heat  t r ans fe r  t o  cones. 
r e su l t i ng  data  support t h e  following conclusions: 

The 

1. If t h e  shape of a cone i s  a l t e r e d  t o  form a cavi ty  over which a laminar- 
separated boundary-layer flows, t he  d i s t r i b u t i o n  of heat t r a n s f e r  i s  changed 
considerably. In  t h e  forward port ion of t h e  cavi ty  the heat t r ans fe r  decreases; 
whereas, i n  the rearward por t ion  the  heat  t r a n s f e r  increases  i n  the  reattachment 
region t o  a m a x i m  which i s  severa l  times t h a t  fo r  a t tached flow. 

2. Fromthe standpoint of t o t a l  heat t r a n s f e r ,  t he re  w a s  an adverse e f f e c t  
of separating the  boundary layer  on t h e  models t e s t e d .  The la rge  reduction of 
heat t r a n s f e r  i n  t h e  forward por t ion  of t h e  separated region w a s  o f f se t  by the  
increased heat- t ransfer  rates over a m c h  grea te r  area i n  t h e  v i c i n i t y  of the 
reattachment region.  

3.  W a l l  cooling has a strong influence on the  flow over some of the  models 
with c a v i t i e s .  On some models, extreme w a l l  cooling caused the t r a n s i t i o n  po in t  
t o  move upstream. I n  one case,  extreme w a l l  cooling caused t h e  flow t o  be 
completely at tached over a model which had a separated laminar boundary layer  
under ad iaba t ic  w a l l  condi t ions.  

4. 
t o  pu lsa te .  
those f o r  steady separated flow. 

Under c e r t a i n  conditions the flow over a model having a cavi ty  tended 
Under these  conditions the  hea t - t ransfer  rates were s imilar  t o  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett F ie ld ,  C a l i f . ,  May 8, 1963 
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Table I -Thermocouple locations, - s/sm 

Model d e s i q n a t i o n  

I No. I I A  I I B  1 I C  I I D  I 2A I 2 8  
I I 

I I I I 

I .089 0 .088 0 0 0 

2 .I80 .087 .202 .087 .091 .091 

~~ 

I2 1.000 1.000 I 1.000 I 1.000 I1.000 I1.000 

2C I 3 A  I 38 

o l o l o  

.454 I .445 I .445 

.635 .636 .632 

,730 .728 .730 

.822 .825 .829 

.910 .919 ,918 

1.000 1.000 1.000 
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Figure 1.- Models - Continued. 
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Model 2C 

Model 3 A  

r0 .0625"  rad 
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Figure 1.- Models - Concluded. 
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( a )  Cool ing mechan ism c l o s e d  

Observation window f ,--Recess in tunnel wall 

J / ,-Spray nozz le 

(b )  Cylinder only r e t r a c t e d  

(c) Coo l i ng  m e c h a n i s m  f u l l y  r e t r a c t e d  

Figure 2 .- Tunnel installation. 
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Model IC Model ID 

Ad io botic 

Model IC in free flight , 
T - = 0.20 
Tt 

Figure 3.- Effect  of w a l l  cooling on separated laminar boundary layers; & = 5.09, 
Re, = 1.2X106, f t - l .  
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Figure 4.- Comparison of heat-transfer distribution between models lA and 1C; 
M, = 5.09, Re, = 1.2X106, f t - l .  
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Figure 5.- Comparison of heat-transfer distribution between models 1B and 1D; 
M, = 5.09, Re, = 1.2X106, ft-l. 
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Figure 6.- Comparison of heat-transfer distribution between models 2 A  and lB; 
= 3.79, Re, = l.5XlO6, f t - l .  
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Figure 7.- Comparison of heat-transfer distribution between models 3A and 3B; 
M, = 5.09, Re, := 1.2x10G, ft-i. 
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I Figure 8 .- Comparison of heat-transfer distribution between pulsating-flow 
model 2C and model 2A; Q = 3.98, Re, = 10X106, ft-l. 
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